OPERATEURS DIFFERENTIELS

Définition 1 : Champ de vecteurs

On appelle champs de vecteurs toute application du type : $\vec{V}: U \to \mathbb{R}^n$

<u>Définition 2</u>: Gradient

Soient $U \subset \mathbb{R}^n$ et f une application de classe C^1 de U dans \mathbb{R} .

On appelle gradient de f au point M le vecteur noté $\overrightarrow{grad}_{M}f$ qui a pour coordonnées :

$$\left(\frac{\partial f}{\partial x_i}(M)\right)_{1 \le i \le n}$$
. On nota aussi : $\overrightarrow{\nabla}_M f = \overrightarrow{grad}_M f$ (Nabla f).

On appelle opérateur gradient l'application définie par : $\overrightarrow{grad}_M f$ (Nabla f).

On appelle opérateur gradient l'application définie par : $\overrightarrow{grad} f$: $U \to \mathbb{R}^n$ $M \mapsto \overrightarrow{grad}_M f$

On note aussi : $\overrightarrow{\nabla} f = \overrightarrow{grad} f$

Signification: $\overrightarrow{grad}f$ est un vecteur qui indique la direction et le sens de croissance de la fonction f dans l'espace.

Entre deux points très proches, distants d'une longueur δx , on mesure un écart de température δT . Au sens usuel, le gradient (de température) est justement le rapport entre ces deux grandeurs: $grad T = \frac{\delta T}{\delta x}$.

Au sens analytique (mathématique), on parle de gradient si cette grandeur admet une limite quand δx tend vers 0, limite notée : $\nabla T(x) = \frac{dT}{dx}(x)$.

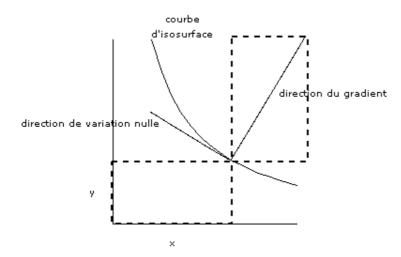
Théorème : Soit $f \in C^1(U)$.

$$f\left(M + \vec{h}\right) = f(M) + \vec{h}.\overrightarrow{grad}_{M}f + \left\|\vec{h}\right\|\varepsilon\left(\vec{h}\right) = f(M) + \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}(M).h_{i}\right) + \left\|\vec{h}\right\|\varepsilon\left(\vec{h}\right)$$

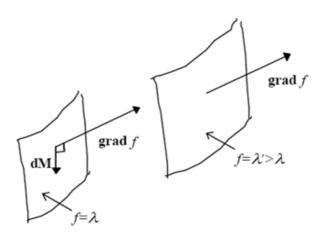
Rq: c'est le DL à l'ordre 1 de f.

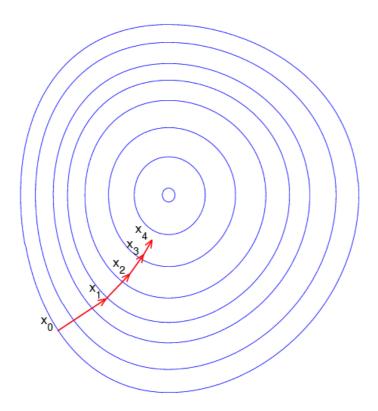
Conséquences:

- i) $df = \overrightarrow{grad} f.\overrightarrow{dM}$
- Une surface de niveau est définie par l'équation f(x, y, z) = cte. Sur une surface de niveau la fonction f est donc constante. Ainsi, pour tout déplacement élémentaire sur cette surface, la variation de f est nulle. On a donc df = grad f . dM = 0. Le vecteur $\overrightarrow{grad} f$ est donc normal aux surfaces de niveau.



Lorsque l'on passe d'une surface de niveau à une surface voisine correspondant à une plus grande valeur de f (df > 0), la même relation (df = $\overrightarrow{grad} f.\overrightarrow{dM}$) montre que $\overrightarrow{grad} f$ est dirigé suivant les valeurs croissantes de f.





Propriété 1:

$$\overrightarrow{grad}(fg) = f \overrightarrow{grad}(g) + g \overrightarrow{grad}(f)$$

Définition 3:

Soient $U \subset \mathbb{R}^n$ et \overrightarrow{V} un champ de vecteurs défini sur U.

On dit que \overrightarrow{V} dérive d'un potentiel scalaire s'il existe une application différentiable f de U dans $\mathbb R$ telle que :

$$\vec{V} = \overrightarrow{grad} f$$

On dit alors que \vec{V} dérive du potentiel scalaire f.

<u>Définition 4</u>: Divergence

Soient $U \subset \mathbb{R}^n$ et \vec{V} un champ de vecteurs de classe C^1 sur U.

On appelle divergence de \vec{V} au point M le scalaire $div_M \vec{V} = \sum_{i=1}^n \frac{\partial V_i}{\partial x_i}(M)$.

On appelle opérateur divergence l'application définie par :

$$div \overrightarrow{V} : U \to \mathbb{R}$$

$$M \mapsto div_M \overrightarrow{V}$$

Rq: On note aussi : $div\vec{V} = \vec{\nabla}.\vec{V}$.

Propriété 2:

$$div(f\overrightarrow{V}) = \overrightarrow{grad}(f).\overrightarrow{V} + f.div\overrightarrow{V}$$

<u>Définition 5</u>: Laplacien

Soient $U \subset \mathbb{R}^n$ et f une application de classe C^2 de U dans \mathbb{R} .

On appelle laplacien de f au point M le scalaire $\Delta_M f = div_M \left(\overrightarrow{grad} f \right) = \sum_{i=1}^n \left(\frac{\partial^2 f}{\partial x^2} (M) \right)$.

Propriété 3:

$$\Delta(fg) = f \Delta g + g \Delta f + 2 \Big(\overrightarrow{grad}(f) \Big) . \Big(\overrightarrow{grad}(g) \Big)$$

Définition 6 : Rotationnel

Soient $U \subset \mathbb{R}^n$ (n=3) et $\vec{V} \in C^1$ (U).

On appelle rotationnel de \overrightarrow{V} au point M le vecteur noté $\overrightarrow{rot}_{M}\overrightarrow{V}$ qui a pour coordonnées : $\left(\frac{\partial V_{3}}{\partial x_{2}} - \frac{\partial V_{2}}{\partial x_{3}}; \frac{\partial V_{1}}{\partial x_{3}} - \frac{\partial V_{3}}{\partial x_{1}}; \frac{\partial V_{2}}{\partial x_{1}} - \frac{\partial V_{1}}{\partial x_{2}}\right)$.

$$\overrightarrow{rotV}: U \to \mathbb{R}^3$$

$$M \mapsto \overrightarrow{rot}_M \overrightarrow{V}$$

$$\mathbf{Rq}: \overrightarrow{rotV} = \left(\begin{vmatrix} \frac{\partial}{\partial x_2} & V_2 \\ \frac{\partial}{\partial x_3} & V_3 \end{vmatrix}; - \begin{vmatrix} \frac{\partial}{\partial x_1} & V_1 \\ \frac{\partial}{\partial x_3} & V_3 \end{vmatrix}; \begin{vmatrix} \frac{\partial}{\partial x_1} & V_1 \\ \frac{\partial}{\partial x_2} & V_2 \end{vmatrix} \right) = \overrightarrow{\nabla} \wedge \overrightarrow{V} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} \wedge \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}.$$

Propriété 4:

$$\overrightarrow{rot}\Big(f\overrightarrow{V}\Big) = f\overrightarrow{rot}\overrightarrow{V} + \overrightarrow{grad}f \wedge \overrightarrow{V}$$

Propriété 5:

i)
$$\vec{V} \in C^2(U) \Rightarrow div(\overrightarrow{rot}_M \vec{V}) = 0$$

$$ii)$$
 $f \in C^2(U) \Rightarrow \overrightarrow{rot} \left(\overrightarrow{grad}_M f \right) = \overrightarrow{0}$